
1

AWK Tutorial

AWK is a tool designed for text processing. It is o�en used for data munging (pre-processing, forma�ng,
extrac�on, etc.). AWK was developed in 1977 by Alfred Aho, Peter Weinberger, and Brian Kernighan. The
name AWK comes from the last ini�als of the three developers.

In this tutorial, we will introduce you to some of the basic and most o�en used features of AWK. The
beauty of AWK is that it is easy to learn and can be used to accomplish numerous tasks without the need
to write long programs.

Basic Structure

AWK scripts process text files one line at a �me (i.e. it is line oriented). It has the following implicit loop:

for each line in input do
 execute the commands in the AWK script.

An AWK script has the following form:

pattern { action }

pattern specifies when the action is performed. For example, two special paterns are BEGIN and
END. The BEGIN patern specifies a block of ac�ons that should be performed once, at the beginning of
processing. Similarly, the END patern specifies a block of ac�ons to be done once, at the end of
processing. A null patern (a blank patern) specifies that its ac�on block should be executed on each
line of input. Here is a simple example script (stored in a file: helloAWK.awk):

BEGIN { print “Script Started” }
{ print $0 } # A line with a null pattern
END { print “Script Completed.” }

The script above specifies the prin�ng of two start and end messages. A # represents the start of a
comment. The second line (a null patern) prints out the contents of each line. $0 is an AWK variable
(more on that below) that gets bound to each line. For example, suppose the input file (trigram.txt) has
the following contents:

He likes attention 196
He likes bananas 51
He likes barbeque 44
He likes baseball 188
He likes basketball 57
He likes beer 281
He likes being 2026

The above data is from Google’s trigram dataset. Each line represents a sequence of three words
followed by a count of how many �mes the sequence of three words appeared on the web. To run the
above script on the data file, we use the command:

2

$ awk -f hello.awk trigram.txt
Script Started
He likes attention 196
He likes bananas 51
He likes barbeque 44
He likes baseball 188
He likes basketball 57
He likes beer 281
He likes being 2026
Script Completed.

The -f op�on on the awk command is followed by the name of the script file (helloAWK.awk) which is
followed by the name of the text file (trigram.txt). We can also run the command using I/O
redirec�on:

$ awk -f hello.awk < trigram.txt

In fact, for short AWK scripts we can even specify the script in the command line:

$ awk ‘{print $0}’ trigram.txt
He likes attention 196
He likes bananas 51
He likes barbeque 44
He likes baseball 188
He likes basketball 57
He likes beer 281
He likes being 2026

AWK Variables

AWK defines several variables that are helpful in wri�ng scripts and processing the input line. In the
helloAWK.awk script, we used a variable $0. For each line, AWK binds $0 to the contents of the en�re
input line. In addi�on, AWK treats Each item on a line as a field. It creates and binds variables to each
field. Thus, for the first line of the text file we will have the following variables and bindings:

$0: “He likes attention 196”
$1: “He”
$2: “likes”
$3: “attention”
$4: 196

A field on a line is anything separated by a space character. Suppose we wanted to process the input file
so that only the third word and the counts were output, we could write the following short script:

{ print $3, $4 }

Let us run and observe the output:

3

$ awk ‘{print $3, $4}’ trigram.txt
attention 196
bananas 51
barbeque 44
baseball 188
basketball 57
beer 281
being 2026

We can also switch the order. Say, we want to see the counts to appear at the start of each line:

$ awk ‘{print $4, $1, $2, $3}’ trigram.txt
196 He likes attention
51 He likes bananas
44 He likes barbeque
188 He likes baseball
57 He likes basketball
281 He likes beer 281
2026 He likes being 2026

As you can see, AWK can be used as a valuable tool to do data munging (processing, reforma�ng, etc.)
to prepare for an applica�on. For example, say we want to prepare the file so it can be a CSV file (comma
separated file):

$ awk ‘{print $1,”,”,$2,”,”,$3,”,”,$4}’ trigram.txt
He ,likes ,attention ,196
He ,likes ,bananas ,51
He ,likes ,barbeque ,44
He ,likes ,baseball ,188
He ,likes ,basketball ,57
He ,likes ,beer ,281
He ,likes ,being ,2026

Well, that inserted the commas, but didn’t quite come out right. That is because the print command
always appends a space character a�er each output. AWK also accepts the C printf() command. This
allows us to have more control over forma�ng:

$ awk ‘printf(“%s,%s,%s,%d\n”, $1, $2, $3, $4)}’ trigram.txt
He,likes,attention,196
He,likes,bananas,51
He,likes,barbeque,44
He,likes,baseball,188
He,likes,basketball,57
He,likes,beer,281
He,likes,being,2026

We men�oned above that the fields in a line need to be separated by a space character. We can specify a
field separator in the script as well. For example, consider a CSV file with these contents
(trigram2.txt):

4

He,likes,attention,196
He,likes,bananas,51
He,likes,barbeque,44
He,likes,baseball,188
He,likes,basketball,57
He,likes,beer,281
He,likes,being,2026

We can use the command line op�on -F to specify that the field separator is a comma (,) instead of a
space:

$ awk -F, ‘{print $4, $1, $2, $3}’ trigram2.txt
196 He likes attention
51 He likes bananas
44 He likes barbeque
188 He likes baseball
57 He likes basketball
281 He likes beer 281
2026 He likes being 2026

In fact, AWK predefines an input field separator variable, FS that can also be set at the beginning of a
script (say, in file helloAWK2.awk):

File: helloAWK2.awk
BEGIN { FS=”,”; }
{ print $4, $1, $2, $3, $4 }

$ awk -f helloAWK2.awk trigram2.txt
196 He likes attention
51 He likes bananas
44 He likes barbeque
188 He likes baseball
57 He likes basketball
281 He likes beer 281
2026 He likes being 2026

Other AWK Variables

In addi�on to the $-variables, that are automa�cally created for each line, and FS, AWK defined several
other useful variables:

FS Field Separator
NF Number of fields on the current line
NR Record/line number
FILENAME Name of the current file being processed

These variables can be referenced in an awk script by their names (listed above). For example,

5

$ awk ‘{print NR, $0}’ trigram.txt
1 He likes attention 196
2 He likes bananas 51
3 He likes barbeque 44
4 He likes baseball 188
5 He likes basketball 57
6 He likes beer 281
7 He likes being 2026

You can also use the named variable with a $-prefix to access a field in a line. For example, to extract the
value of the last field from a data file:

$ awk ‘{print $NR}’ trigram.txt
196
51
44
188
57
281
2026

User Defined Variables

At any �me in a script a user-named variable can be defined and used (file total.awk):

BEGIN { sum=0; }
{ sum = sum + $4;
 print $0;
}
END { printf(“The total count is %d\n”, sum); }

$ awk -f total.awk trigram.txt
He likes attention 196
He likes bananas 51
He likes barbeque 44
He likes baseball 188
He likes basketball 57
He likes beer 281
He likes being 2026
The total count is 2843

Example: Normalizing counts

Say we want to normalize the counts in our data file. That is, divide each count by the total. To do this,
first we will compute the count, as above. Next, we can write the following script (normalize.awk):

BEGIN { total=2843; }
{ norm = $4/total;
 printf(“%s %s %s %0.3f\n”, $1, $2, $3, norm);
}

6

$ awk -f normalize.awk trigram.txt
He likes attention 0.069
He likes bananas 0.018
He likes barbeque 0.015
He likes baseball 0.066
He likes basketball 0.020
He likes beer 0.099
He likes being 0.713

Executable AWK Scripts

Any AWK script file can be turned into an executable shell script. This can be done in two steps. First, add
the script line to the AWK source file (we will use total.awk from above):

#!/usr/bin/awk -f
BEGIN { sum=0; }
{ sum = sum + $4;
 print $0;
}
END { printf(“The total count is %d\n”, sum); }

Next, make the script file have executable permissions:

$ chmod 755 total.awk

Now the script can be executed like a Linux command:

$./total.awk trigram.txt
He likes attention 196
He likes bananas 51
He likes barbeque 44
He likes baseball 188
He likes basketball 57
He likes beer 281
He likes being 2026
The total count is 2843

AWK Statements

AWK has all C-like statements available to use in the scripts. That is, it is a general-purpose programming
language. Here is the list of all the statements available:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
for (variable in array) statement
break
continue
{ [statement] ...}
variable=expression

7

print [expression-list] [> expression]
printf format [, expression-list] [> expression]
next
exit

The next command, if executed, moves on to processing the next line in input. And the exit command
quits the script.

Example: Filter out any lines in the input with counts less than 60. Here is the script file (filter.awk):

#!/usr/bin/awk -f
BEGIN { thresh=60; }
{ if ($4 <= 60)
 next; # Skip this line
 else
 print $1, $2, $3, $4;
}

$./filter.awk trigram.txt
He likes attention 196
He likes baseball 188
He likes beer 281
He likes being 2026

AWK Paterns

At the start of this tutorial, we men�oned that an AWK script has the following syntax:

pattern { action }

So far, we have only been using the BEGIN, END, and the null paterns. A patern essen�ally specifies a
condi�on (a test). If the patern matches the input line (or the test succeeds) the associated block’s
ac�on is carried out. For example, look at the script, filter.awk:

#!/usr/bin/awk -f
BEGIN { thresh=60; }
{ if ($4 <= 60)
 next;
 else
 print $1, $2, $3, $4;
}

Using a patern, we could write the script where the condi�on is specified as a patern:

#!/usr/bin/awk -f
BEGIN { thresh=60; }
$4 <= 60 { next; }
$4 > 60 { print $1, $2, $3, $4;}

8

Another way to specify paterns is as regular expressions (remember when we learned the grep
commands?). Regular Expressions are a convenient way to define paterns in strings. Thus, the regular
expression patern /likes/ will match any line that contains the patern. For example: The script
(pattern.awk):

/ba/ { print $0; }

will print all lines in the input that have the patern “ba” in them. Let’s run the script:

$ awk -f pattern.awk trigram
He likes bananas 51
He likes barbeque 44
He likes baseball 188
He likes basketball 57

Above, any line that matches the patern is printed (the ac�on). If we wanted to eliminate all lines that
contain the patern /ba/ we could write the following:

/ba/ { next; } # Skip this line as it has /ba/
{ print $0;} # Otherwise print it

$ awk -f pattern.awk trigram
He likes attention 196
He likes beer 281
He likes being 2026

But wait! There is more!!

AWK has several library func�ons that can be used:

Trigonomentric Func�ons sin(), cos(), etc.
Math Func�ons exp(), log(), sqrt(), etc.

Random Numbers srand(), rand()
String Func�ons length(), split(), tolower(), toupper(), etc.
User-defined Func�ons Yes, this is also possible.

This is a good place to stop. As you can see, AWK is a useful tool to do any kind of text/data file munging.
We have introduced some of the key features of AWK in this tutorial. Perhaps the most o�en used
features you will ever need. Consult the AWK Manual for more. During the break, learn about Regular
Expressions. They are very useful in several contexts.

